skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Contreras-Vidal, Jose L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2026
  2. Background: Democratized access to safe and effective robotic neurorehabilitation for stroke survivors requires innovative, affordable solutions that can be used not only in clinics but also at home. This requires the high usability of the devices involved to minimize costs associated with support from physical therapists or technicians. Methods: This paper describes the early findings of the NeuroExo brain–machine interface (BMI) with an upper-limb robotic exoskeleton for stroke neurorehabilitation. This early feasibility study consisted of a six-week protocol, with an initial training and BMI calibration phase at the clinic followed by 60 sessions of neuromotor therapy at the homes of the participants. Pre- and post-assessments were used to assess users’ compliance and system performance. Results: Participants achieved a compliance rate between 21% and 100%, with an average of 69%, while maintaining adequate signal quality and a positive perceived BMI performance during home usage with an average Likert scale score of four out of five. Moreover, adequate signal quality was maintained for four out of five participants throughout the protocol. These findings provide valuable insights into essential components for comprehensive rehabilitation therapy for stroke survivors. Furthermore, linear mixed-effects statistical models showed a significant reduction in trial duration (p-value < 0.02) and concomitant changes in brain patterns (p-value < 0.02). Conclusions: the analysis of these findings suggests that a low-cost, safe, simple-to-use BMI system for at-home stroke rehabilitation is feasible. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  3. Although significant progress has been made in understanding the cortical correlates underlying balance control, these studies focused on a single task, limiting the ability to generalize the findings. Different balance tasks may elicit cortical activations in the same regions but show different levels of activation because of distinct underlying mechanisms. In this study, twenty young, neurotypical adults were instructed to maintain standing balance while the standing support surface was either translated or rotated. The differences in cortical activations in the frontocentral region between these two widely used tasks were examined using electroencephalography (EEG). Additionally, the study investigated whether transcranial magnetic stimulation could modulate these cortical activations during the platform translation task. Higher delta and lower alpha relative power were found over the frontocentral region during the platform translation task when compared to the platform rotation task, suggesting greater engagement of attentional and sensory integration resources for the former. Continuous theta burst stimulation over the supplementary motor area significantly reduced delta activity in the frontocentral region but did not alter alpha activity during the platform translation task. The results provide a direct comparison of neural activations between two commonly used balance tasks and are expected to lay a strong foundation for designing neurointerventions for balance improvements with effects generalizable across multiple balance scenarios. 
    more » « less
  4. Free, publicly-accessible full text available March 1, 2026
  5. The use of scalp electroencephalography (EEG) signals for brain-computer interface (BCI) to control end effectors in real time, while providing mobile capabilities for use at home neurorehabilitation, requires of software and hardware robust solutions. Moreover, to ensure democratized access to these systems, low cost, interoperability, and ease of use are essential. These challenges were addressed in the design, development and validation of the NeuroExo BCI System. As a proof of concept, the system was tested with an exoskeleton system for upper-limb stroke rehabilitation as the end effector. 
    more » « less